Ratio: 5 / 5

Inicio activadoInicio activadoInicio activadoInicio activadoInicio activado
 

Selección y aplicación de motores eléctricos 

Siempre que se tiene la necesidad de adquirir un motor, hay que hacer antes los siguientes cuestionamientos:

  • ¿Es una instalación nueva o existente?
  • ¿Cuáles son las condiciones de la red eléctrica?
  • ¿Cuál es la carga que el motor va a accionar?
  • ¿Cuáles son las condiciones medioambientales?
  • ¿Cuál va a ser el tiempo de recuperación de la inversión?
  • ¿Qué tipo de normas debe cumplir el motor?
  • ¿Cómo va a ser hecho el arranque del motor?
  • ¿Cuáles son las características de potencia y velocidad requeridas del motor?

POR QUÉ EL MOTOR JAULA DE ARDILLA

Dentro del universo de motores eléctricos, el motor jaula de ardilla es el más común y de uso más generalizado por diversas razones:

Bajo costo

Bajo mantenimiento

Fácil de adquirir

Alto grado de protección

Pocos componentes Robusto

Por carecer de chispas internas, puede instalarse en ambientes de riesgo. Con el avance de la electrónica de potencia, hoy en día es el motor más práctico para realizar aplicaciones en donde se requiere variación de velocidad, llegando incluso a desplazar el motor de corriente contínua.

LAS NORMAS

Existen dos normas bajo las cuales se fabrican los motores. IEC Comisión Electrotécnica Internacional que es acogida por la gran mayoría de países y especialmente los europeos NEMA Asociación Nacional de Fabricantes de Equipos Eléctricos. Es una norma nacional de Estados Unidos, pero es común en muchos países. Hay varias diferencias en la construcción dependiendo de la norma, pero lo más significativo es que mientras que las dimensiones según IEC son en milímetros, según NEMA son en pulgadas. Por esta razón, la intercambiabilidad no es inmediata.

EL LUGAR DE INSTALACIÓN.

Por norma, todos los motores están diseñados para operar en un ambiente con temperatura no superior a 40 ºC y en una altura no superior a 1000 metros sobre el nivel del mar. La instalación en cualquier ambiente por encima de estas condiciones hará que el motor deba ser operado a una carga menor de la nominal. Cortamente, esto sucede porque las propiedades refrigerantes disminuyen. La vida útil de un motor está principalmente en su devanado. Si la refrigeración es insuficiente, el devanado se debilita y sufre daños severos. Generalmente, los motores jaula de ardilla están refrigerados mediante aire. A mayor altitud sobre el nivel del mar, el aire toma una densidad mayor y a una misma velocidad, se tendrá menor flujo de aire. En cuanto a la temperatura ambiente, es necesario garantizar que el motor no tendrá una elevación de temperatura tal que lo haga tener un calentamiento por encima de su límite térmico (definido por su clase de aislamiento). Pero la combinación de altitud y temperatura no siempre es desfavorable, pues en lugares como Bogotá en donde tenemos altitud de 2600 m, pero una temperatura ambiente de 20°C, podemos prácticamente decir que se compensa el efecto.

LA CARGA

La carga es la que define la potencia y velocidad del motor. En la gran mayoría de aplicaciones, el motor jaula de ardilla puede atender cualquier carga en su eje, pero es conveniente hacer un estudio detallado de cuál será el momento de inercia, la curva Par-Velocidad de la carga. Estos puntos nos ayudan a definir cómo será el comportamiento dinámico del motor con su máquina de trabajo y cuáles serán los tiempos de arranque. Es ideal conocer las condiciones de la carga durante la especificación del motor, pues el comportamiento varía, dependiendo de ésta. Máquinas como bombas y ventiladores tienen un comportamiento específico diferente de molinos, trituradoras y diferente de bandas transportadoras o de máquinas herramientas o elevadores. En todas estas máquinas, los torques de arranque son diferentes y con toda seguridad, los ciclos de trabajo varían de una instalación a otra.

doble tensión, generalmente 220/440 V. Industrias “grandes” tienen tensiones mayores, como pueden ser 460 V ó 480 V. Se acostumbra a que los motores con potencias de potencias de 10 HP o superiores sean aptos para el arranque Estrella-Triángulo, con el objetivo de que la red no se desestabilice por las altas corrientes consumidas durante el arranque directo. De esta forma, para las potencias mencionadas los motores Standard en nuestro país tienen doce cables de conexión. Esta característica les hace aptos para funcionar prácticamente en cualquier red, pero es importante tener bastante precaución en las conexiones, pues con mayor cantidad de uniones a realizar, se puede presentar mayor cantidad de errores. Esto debe evitarse durante la etapa de instalación.

EL ARRANQUE

Uno de los momentos más críticos para el motor, la red y la carga es el arranque. Por sus características propias, el motor jaula de ardilla consume durante el arranque una corriente que puede oscilar entre 5 y 8 veces la corriente nominal. El arranque es el periodo en el que el motor hace la transición desde su estado de reposo hasta su velocidad de régimen. Para la red, la mejor condición de arranque es aquella en que este tiempo de transición es el mínimo posible y la corriente consumida es la mínima posible. Para el motor, la mejor condición de arranque es la que garantiza el menor calentamiento. Para la carga, la mejor condición es aquella que garantiza los menores desgastes mecánicos. En general, el tipo de arranque de cada aplicación debe ser analizado adecuadamente para lograr el mejor equilibrio entre las tres parte mencionadas previamente. Las características de curva de carga y momento de inercia tanto de motor como de carga, deberían ser consideradas en este análisis. Junto con criterios técnicos se considerarán criterios económicos.

Existen los siguientes tipos de arranque:

1. Directo. El motor tendrá una corriente de arranque normal (hasta ocho veces la corriente nominal) y un par de arranque normal.

2. Estrella-Triángulo. La corriente y el torque se reducen a la tercera parte (hasta tres veces la corriente nominal).

3. Por Autotransformador. El autotransformador es fabricado para entregar al motor una tensión menor de la nominal. Esta tensión puede estar entre el 30% y el 70% dependiendo de la aplicación. La corriente y el torque variarán en proporción cuadrática a la tensión de alimentación.

5. Variador de velocidad (o variador de frecuencia). Mediante este método, se logra limitar la corriente de arranque a valores de hasta dos veces la corriente nominal, mientras se obtiene un torque de arranque adecuado para cualquier aplicación. Además, la transición será la más suave posible de todos los métodos. Mecánicamente, es la mejor forma de hacer la operación, además de que permite realizar control de velocidad preciso, gracias a los avances de la electrónica de potencia y control.

En los primeros tres métodos se da una transición brusca desde el reposo hasta su velocidad de régimen. En los métodos 2 y 3, adicionalmente se da una transición desde el estado de tensión reducida a tensión plena. En el método 4, se logra una transición menos brusca, pero aún con algunos saltos, pues lo que se está controlando es la tensión de alimentación. En el método 5, se logra una transición mucho más suave, pues se está controlando efectivamente la velocidad del motor y de la carga.

A pesar de que hay demasiados factores a considerar y no es posible considerarlos todos en este artículo, es oportuno estudiar al menos los criterios anteriores, para hacer una buena selección de los equipos.